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Abstract

Solutions for problems of circular twist and wedge disclination loops in an in®nitely extended linear isotropic
nonlocal elastic medium are obtained assuming an appropriate nonlocal modulus. The equilibrium equation is
satis®ed by introducing the KroÈ ner's stress function tensor. The Laplace and Hankel transforms are used to obtain

the stress ®elds and the stored elastic energies. The oscillatory integrals containing Bessel functions are transformed
into integrands which decay exponentially, thus producing a solution more amenable to numerical quadrature. It is
found that maximum stresses are reached at some distance from the defect line. The obtained solutions lead to ®nite

values of stresses at this line and reduce to the classical ones in the long wave-length limit. 7 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Disclinations have been receiving the attention of many researchers, in particular, in the context of

their applications to polymers (Li and Gilman, 1970), liquid crystals (Bouligand, 1981), biological

structures (Harris, 1974), grain boundaries (Li, 1972), amorphic solids (Richter et al., 1984), rotation

plastic deformation (Romanov and Vladimirov, 1992) (see also a review article of Romanov and

Vladimirov, 1983). Elastic ®elds and energies of circular twist and wedge disclinations have been

investigated in the frame-work of classical elasticity by Li and Gilman (1970), Huang and Mura (1970),
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Liu and Li (1971), Kuo and Mura (1972) and Kuo et al. (1973). For comprehensive review and
additional references, see also a study of Kolesnikova and Romanov (1986).

A limitation of the abovementioned solutions is that the stress ®eld has nonphysical singularity at the
disclination line and the elastic energy diverges if one does not cut the defect core. Many e�orts have
been made to improve classical elastic solutions, for instant combining the elastic and discrete
approaches for better description of high distorted region near defect. A review of the Frenkel±
Kontorova and Pierls±Nabarro models for dislocations and their generalizations was made by Hirth and
Lothe (1968). The semi-discrete approach according to which the crystal in the vicinity of defect is
treated as a discrete lattice, and for the remainder of the crystal an elastic continuum model is used, has
been discussed extensively by Teodosiu (1982) and Duesbery (1989). But all the abovementioned
improvements only consider straight dislocations.

Though the literature concerning various models of the dislocation core is very extensive, that for the
disclination core is not numerous. We can only mention studies of Doyama and Cotteril (1984) and
Mikhailin and Romanov (1986) on computer simulation of straight disclinations. As far as we can
judge, no other attempts have been made to improve the situation in the vicinity of the disclination line,
especially for circular disclinations. Recently, great advances have been made in crystal defect research
by application of nonlocal elasticity which takes into account interatomic long-range forces. Several
versions of nonlocal continuum mechanics have been proposed by KroÈ ner (1967), Eringen (1972),
Edelen (1976), Kunin (1986) and others. Theory of nonlocal elasticity indicates its power in the study of
such problems as line crack (Eringen et al., 1977), rectangular rigid stamp (Artan and Yelkenci, 1996),
straight edge (Eringen, 1977a) and screw (Eringen, 1977b; Gao, 1990) dislocations, straight wedge and
twist disclinations (Povstenko, 1995a), circular prismatic and glide dislocation loops (Povstenko, 1995b).

In this paper, the solutions for the problems of circular twist disclination loop with the Frank vector
normal to the loop plane and wedge disclination loop with the Frank vector in a loop plane are
obtained by solving the ®eld equations of nonlocal elasticity proposed by Eringen (1972). We also
consider the circular rotation dislocation loop as the solution for a defect of such a type, very similar to
the solution for the circular twist disclination loop. The obtained stress ®elds have no singularities at the
defect lines, in contrast to the classical elastic ones and reduce to the classical results in the long wave-
length limit. The stored elastic energies are also calculated.

2. The governing equations and statement of the problem

For the static case with vanishing body force, the basic equations for a linear isotropic nonlocal
elastic solid are (Eringen, 1972)

r � t � 0, �1�

t�x; t� �
�
V

a
ÿjx 0 ÿ xj, t�sss�x 0 � dv�x 0 �, �2�

sss�x 0 � � l tr e�x 0 �I� 2me�x 0 �, �3�

e�x 0 � � Def u�x 0 �: �4�
Here, x and x 0 are reference and running points, t and sss the nonlocal and classical stress tensors, u is
the displacement vector, e the linear strain tensor, I the unit tensor, l and m are the LameÂ constants.
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The nonlocal modulus a�jxÿx 0j, t� includes the parameter t proportional to a characteristic length ratio
a/l, where a is an internal characteristic length (for example, the lattice parameter) and l is an external
characteristic length (Eringen, 1983). This modulus describes the nonlocal interaction, is a delta
sequence, and in the classical elasticity limit �t40� it becomes the Dirac delta function

lim
t40

a
ÿjxÿ x 0j, t� � d

ÿjxÿ x 0j�:
Eringen (1972, 1983) has ascertained the properties of nonlocal modulus and found several di�erent
forms, giving a perfect match with the atomic lattice dynamics. In the present paper, we employ the
following nonlocal modulus

a
ÿjxÿ x 0j, t� � 1

8�pt�3=2 exp

�
ÿ jxÿ x 0j2

4t

�
, �5�

where t � �1=4�l 2t (or t � a2=4k2 with a being the lattice parameter and k an appropriate constant
which may be determined either from experiments or by comparison with the results based on lattice
dynamics).

The nonlocal modulus (5) is a fundamental solution for the di�usion operator. Thus, the stress ®eld t
is determined from the equation

@ t

@ t
ÿ r 2t � 0 �6a�

under the condition

t � 0: t � sss: �6b�

Indicating the Laplace transform with respect to t by a superposed bar, we have

r 2Åtÿ sÅt � ÿsss, �6c�

where s is the transform variable.
As in classical elasticity (KroÈ ner, 1958), equilibrium equation (1) may be satis®ed by introducing the

stress function tensor www

t

2m
� r 2www� 1

1ÿ n

h
rr�tr www� ÿ

ÿ
r 2tr www

�
I
i

�7a�

subject to

r � www � 0: �7b�

Here, n is the Poisson ratio. It is easy to show that the following equation is ful®lled

�r 2 ÿ s�r4 Åwww � ÿZZZ, �8�

where ZZZ is the incompatibility tensor related to the plastic strain ep by

ZZZ � Inc ep � ÿr � ep � r �9a�

or to the dislocation density tensor aaa by
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ZZZ � �aaa� r�s, �9b�
where the superscript s indicates symmetrization.

Defect of the Volterra type can be formed by cutting a surface S in a body and the subsequent rigid
relative translation with the Burgers vector b and the rotation with the Frank vector OOO of two sides of
the cut. The corresponding plastic distortion bbbp has the form obtained by Mura (1972)

bbbp � ÿd�S��b� OOO� r�, �10�
where d�S� is the vector delta-function lumped on the surface S (Kunin, 1986).

3. Circular twist disclination loop

Consider a loop of radius R in the plane z � 0 of cylindrical coordinates r, W, z centered at the origin.
A twist disclination is described by the Frank vector in the z direction Oz: The only nonzero component
of the plastic distortion tensor is expressed by

bp
zW � ÿOzrH�Rÿ r�d�z�, �11�

where H�x� is the Heaviside function and d�z� is the Dirac delta function.
The nonzero components of the incompatibility tensor are given by

ZrW �
1

2
OzRd�rÿ R�d 0�z�, �12a�

ZWz � ÿ
1

2
OzR

�
d 0�rÿ R� � 2

R
d�rÿ R�

�
d�z�: �12b�

Using the component representation of Laplacian of the symmetrical second-order tensor in cylindrical
coordinates, Eq. (8) reads�

d2

dz2
ÿ x2 ÿ s

��
d2

dz2
ÿ x2

�2

�w��1�Wz �Mzxd�z�, �13a�

�
d2

dz2
ÿ x2 ÿ s

��
d2

dz2
ÿ x2

�2

�w��2�rW � ÿMzd
0�z�, �13b�

where Mz � �1=2�OzR
2J2�Rx�, Jn is the Bessel function of the ®rst kind of order n, an asterisk with a

superscript in parentheses denote the Hankel transform of the corresponding order with x being the
transform variable.

We look for the solution of Eqs. (13) bounded at in®nity in the form

�w��1�Wz � �A1 � B1xjzj� exp� ÿ xjzj� � C1 exp

h
ÿ
ÿ
x2 � s

�1=2jzji, �14a�

�w��2�rW �
n
�A2 � B2xjzj� exp� ÿ xjzj� � C2 exp

h
ÿ
ÿ
x2 � s

�1=2jzjiosign z: �14b�

Unknown coe�cients are found to be:
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A1 � ÿMz

2

�
1

2x2s
ÿ 1

s2

�
, B1 � B2 � ÿ Mz

4x2s
,

C1 � ÿMzx
2s2

ÿ
x2 � s

�ÿ1=2
, A2 � ÿC2 � Mz

2s2
:

Inverting the Laplace and Hankel transforms, we have from Eqs. (14)

wWz � ÿ
1

8
OzR

2

�1
0

1

x
J2�Rx�J1�rx�Q�x, jzj, t� dx, �15a�

wrW � ÿ
1

8
OzR

2 sign z

�1
0

1

x
J2�Rx�J2�rx�U�x, jzj, t� dx, �15b�

and from Eq. (7a)

trW � ÿ1
2
Az sign z

�1
0

J2�Rx�J2�rx�S�x, jzj, t�x dx, �16a�

tWz � 1

2
Az

�1
0

J2�Rx�J1�rx�T�x, jzj, t�x dx, �16b�

where

Q�x, jzj, t� � 2x3���
p
p

�1
t

zÿ1=2�zÿ t�P�x, jzj, z� dz, �17a�

S�x, jzj, t� � ÿ jzj���
p
p

�1
t

zÿ3=2P�x, jzj, z� dz, �17b�

T�x, jzj, t� � 2x���
p
p

�1
t

zÿ1=2P�x, jzj, z� dz, �17c�

U�x, jzj, t� � x2jzj���
p
p

�1
t

zÿ3=2�zÿ t�P�x, jzj, z� dz, �17d�

P�x, jzj, z� � exp

�
ÿ zx 2 ÿ z2

4z

�
, Az � 1

2
mR 2Oz:

Changing integrals over z and x, we can transform the oscillatory integrals containing Bessel functions
into integrands which decay exponentially, thus producing a solution more amenable to numerical
quadrature

trW � z

2
���
p
p Az

�1
t

zÿ3=2 exp

�
ÿ z2

4z

�
F�2, 2; 1� dz, �18a�
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tWz � 1���
p
p Az

�1
t

zÿ1=2 exp

�
ÿ z2

4z

�
F�2, 1; 2� dz, �18b�

where

F�a, b; c� �
�1
0

exp
ÿ
ÿ x2z

�
Ja�Rx�Jb�rx�xc dx: �19�

Integrals F�a, b; c� used in this paper are expressed in terms of modi®ed Bessel functions and listed in
Appendix A.

Passage in Eqs. (18) to the limit t40 leads to the local elasticity solution

srW � Az sign z I�2, 2; 1�, �20a�

sWz � AzI�2, 1; 1� �20b�
with the standard notation for the integrals of Lipschitz±Hankel type

I�a, b; c� �
�1
0

exp� ÿ xjzj�Ja�Rx�Jb�rx�xc dx, �21�

investigated by Eason et al. (1955), Kuo and Mura (1972), Salamon and Walter (1979) and Hanson and
Wang (1997) and related to the complete elliptic integrals.

Eqs. (20) coincide with those presented by Kolesnikova and Romanov (1986), however srW di�ers
from the one obtained by Kuo et al. (1973). An expression for the displacement component uW in the
last-mentioned paper is correct, but for the stress component srW has an error (it can be easy veri®ed by
di�erentiation).

In the classical theory, the general expression for the energy of twist disclination loop

E T � 1

2
Oz

� 2p

0

�RÿRc

0

sWzjz�0r2 dr dW �22�

after substituting sWz from Eq. (20b) yields

E T � pAzOzR
2I�2, 2; 0�j r � Rÿ Rc

z � 0

: �23�

In Eq. (22), the upper limit of integration R is replaced by Rÿ Rc, where Rc is the core radius, as for
classical solution the energy diverges due to the stress singularity at the disclination line.

The energy of a loop in nonlocal elastic solid reads

E T � ���
p
p

AzOzR
2

�1
t

zÿ1=2F�2, 2; 1�jr�R dz: �24�

4. Circular rotation dislocation loop

For a circular rotation dislocation loop described by the Burgers vector bW, the dislocation density
tensor aaa has the only nonzero component

Y.Z. Povstenko, O.A. Matkovskii / International Journal of Solids and Structures 37 (2000) 6419±64326424



aWW � bWd�rÿ R�d�z�: �25�

Eq. (9b) gives the nonzero components of the incompatibility tensor

ZrW �
1

2
bWd�rÿ R�d 0�z�, �26a�

ZWz � ÿ
1

2
bW

�
d 0�rÿ R� � 1

R
d�rÿ R�

�
d�z�: �26b�

If we substitute OzR by bW, Eqs. (12) coincide with Eqs. (26), except a factor 2 in the second term of the
right-hand side of Eq. (26b). It is obvious that the solution for the circular rotation dislocation loop will
be very similar to the solution for the circular twist disclination loop. We brie¯y describe the
corresponding results.

The nonzero components of the stress function tensor are found to be

wWz � ÿ
1

8
bWR

�1
0

1

x

�
J2�Rx� ÿ 1

Rx
J1�Rx�

�
J1�rx�Q�x, jzj, t� dx, �27a�

wrW � ÿ
1

8
bWR sign z

�1
0

1

x
J2�Rx�J2�rx�U�x, jzj, t� dx, �27b�

while the nonlocal stress tensor components have the following form

trW � ÿ1
2
AW sign z

�1
0

J2�Rx�J2�rx�S�x, jzj, t�x dx, �28a�

tWz � 1

2
AW

�1
0

�
J2�Rx� ÿ 1

Rx
J1�Rx�

�
J1�rx�T�x, jzj, t�x dx �28b�

or (after changing integrals over z and x)

trW � z

2
���
p
p AW

�1
t

zÿ3=2 exp

�
ÿ z2

4z

�
F�2, 2; 1� dz, �29a�

tWz � 1���
p
p AW

�1
t

zÿ1=2 exp

�
ÿ z2

4z

��
F�2, 1; 2� ÿ 1

R
F�1, 1; 1�

�
dz, �29b�

where AW � �1=2�mRbW:
Proceeding to the limit t40 gives

srW � AW sign z I�2, 2; 1�, �30a�

sWz � AW

�
I�2, 1; 1� ÿ 1

R
I�1, 1; 0�

�
: �30b�

The energy of circular rotation dislocation loop is expressed by
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E R � pAWbWR

24I�2, 2; 0�j r � Rÿ Rc

z � 0

ÿ 1

R
I�1, 2; ÿ 1�j r � Rÿ Rc

z � 0

35, �31�

E R � ���
p
p

AWbWR

�1
t

zÿ1=2
�
F�2, 2; 1�jr�R ÿ

1

R
F�1, 2; 0�jr�R

�
dz �32�

for local and nonlocal solutions, respectively.

5. Circular wedge disclination loop

For a circular wedge disclination loop with the Frank vector in the plane of the loop (say, in the y
direction), the nonzero components of the plastic distortion tensor is

bp
zz � OyrH�Rÿ r�d�z�cos W: �33�

The components of the incompatibility tensor are expressed by

Zrr � ÿOyd�rÿ R�d�z�cos W, �34a�

ZWW � ÿOy

�
d�rÿ R� � Rd 0�rÿ R�

�
d�z�cos W, �34b�

ZrW � ÿOyd�rÿ R�d�z�sin W, �34c�

Zzz � 0, Zrz � 0, ZrW � 0: �34d�
Let the components of the stress function tensor www be

wrr � Xrrcos W, wWW � XWWcos W, wrW � XrWsin W:

Then, from Eq. (8), we have Xrr � XrW and�
d2

dz2
ÿ x2 ÿ s

��
d2

dz2
ÿ x2

�2

�F � 2Myxd�z�, �35�

where My � �1=2�OyR
2J2�Rx� and �F should be replaced by two auxiliary functions �X

��1�
rr � �X

��1�
WW and

3 �X
��3�
rr ÿ �X

��3�
WW :

Using the recurrence relations for Bessel functions, the stress function components are expressed as

wrr � ÿ
1

4
OyR

2

�1
0

1

rx2
J2�Rx�J2�rx�Q�x, jzj, t� dx cos W, �36a�

wWW � ÿ
1

4
OyR

2

�1
0

1

x
J2�Rx�

�
J1�rx� ÿ 1

rx
J2�rx�

�
Q�x, jzj, t� dx sin W, �36b�

wrW � ÿ
1

4
OyR

2

�1
0

1

rx2
J2�Rx�J2�rx�Q�x, jzj, t� dx sin W: �36c�
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Eqs. (7a) and (36) permit us to obtain the stress ®eld

trr � Ay

�1
0

J2�Rx�
�
J1�rx�

�
Q�x, jzj, t� ÿ T�x, jzj, t��ÿ 1

rx
J2�rx�

�
Q�x, jzj, t�ÿ

�1ÿ n�T�x, jzj, t���x dx cos W,

�37a�

tWW�Ay

�1
0

J2�Rx�
�
ÿ nJ1�rx�T�x, jzj, t�� 1

rx
J2�rx�

�
Q�x, jzj, t�ÿ�1ÿ n�T�x, jzj, t���x dx cos W, �37b�

tzz � ÿAy

�1
0

J2�Rx�J1�rx�Q�x, jzj, t�x dx cos W, �37c�

trW � Ay

�1
0

1

r
J2�Rx�J2�rx�

��1ÿ n�T�x, jzj, t� ÿQ�x, jzj, t�� dx sin W, �37d�

trz � Ay sign z

�1
0

J2�Rx�
�
J0�rx� ÿ 1

rx
J1�rx�

�
U�x, jzj, t�x dx cos W, �37e�

tWz � ÿAy sign z

�1
0

1

r
J2�Rx�J1�rx�U�x, jzj, t� dx sin W �37f�

with Ay � mR 2Oy=�2�1ÿ n��:
The analogue of Eqs. (18) reads

trr � 2���
p
p Ay

�1
t

zÿ1=2 exp

�
ÿ z2

4z

��
�zÿ t�F�2, 1; 4� ÿ F�2, 1; 2� ÿ zÿ t

r
F�2, 2; 3�

� 1ÿ n
r

F�2, 2; 1�
�

dz cos W, �38a�

tWW � 2���
p
p Ay

�1
t

zÿ1=2 exp

�
ÿ z2

4z

��
ÿ nF�2, 1; 2� � zÿ t

r
F�2,2;3� ÿ 1ÿ n

r
F�2 ,2; 1�

�
dz cos W, �38b�

tzz � ÿ 2���
p
p Ay

�1
t

zÿ1=2�zÿ t� exp

�
ÿ z2

4z

�
F�2, 1; 4� dz cos W, �38c�

trW � 2���
p
p Ay

�1
t

zÿ1=2 exp

�ÿz2
4z

��
1ÿ n
r

F�2, 2; 1� ÿ zÿ t

r
F�2, 2; 3�

�
dz sin W, �38d�

trz � z���
p
p Ay

�1
t

zÿ3=2�zÿ t� exp

�
ÿ z2

4z

��
F�2, 0; 3� ÿ 1

r
F�2, 1; 2�

�
dz cos W, �38e�
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tWz � ÿ z���
p
p

r
Ay

�1
t

zÿ3=2�zÿ t� exp

�
ÿ z2

4z

�
F�2, 1; 2� dz sin W: �38f�

For completeness, we also present the local solution obtained from Eqs. (37) proceeding to the limit
t40

srr � Ay

�
ÿ I�2, 1; 1� � jzjI�2, 1; 2� � 1ÿ 2n

r
I�2, 2; 0� ÿ jzj

r
I�2, 2; 1�

�
cos W, �39a�

sWW � Ay

�
ÿ 2nI�2, 1; 1� ÿ 1ÿ 2n

r
I�2, 2; 0� � jzj

r
I�2, 2; 1�

�
cos W, �39b�

szz � ÿAy

�
I�2, 1; 1� � jzjI�2, 1; 2��cos W, �39c�

srW � Ay

�
1ÿ 2n

r
I�2, 2; 0� ÿ jzj

r
I�2, 2; 1�

�
sin W, �39d�

srz � Ayz

�
I�2, 0; 2� ÿ 1

r
I�2, 1; 1�

�
cos W, �39e�

sWz � ÿAy
jzj
r
I�2, 1; 1�sin W: �39f�

Eqs. (39) coincide with corresponding equations of Kuo and Mura (1972) and Kolesnikova and
Romanov (1986), excluding misprints in the signs reversed to those at I�2, 2; 0� and I�2, 2; 1� in the
expressions for srr obtained by Kuo and Mura. These signs can be veri®ed using KroÈ ner's
representation of the classical stress tensor s in terms of the stress function tensor www and equality tr sss�
ÿ2m�1� n��1ÿ n�ÿ1r 2 tr www:

In the classical theory, the energy of wedge disclination loop is calculated as

E W � ÿ1
2
Oy

� 2p

0

�RÿRc

0

szzjz�0r2 dr cos W dW: �40�

Eqs. (39c) and (40) lead to (Kuo and Mura, 1972; Romanov and Vladimirov, 1992)

E W � p
2
AyOyR

2I�2, 2; 0�j r � Rÿ Rc

z � 0

: �41�

The corresponding expression for the disclination loop in the nonlocal material reads

E W � 1

2

���
p
p

AyOyR
2

�1
t

zÿ3=2�z� t�F�2, 2; 1�jr�R dz: �42�
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Fig. 2. Shear stress on the slip cylinder r � R for the twist disclination loop or the rotation dislocation loop.

Fig. 1. Shear stress in the plane z � 0 for the twist dislocation loop.
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6. Numerical results and discussion

The nondimensional shear stress component in the plane of the twist disclination loop z � 0, tWz=�mOz�
vs. r, calculated from Eq. (18b) is illustrated in Fig. 1 for the loop radius R � 10a: Shear stress on the
cylinder r � R, trW=�mOz� vs. z, is shown in Fig. 2. A comparison between the corresponding results for
the twist disclination loop and the rotation dislocation loop is presented in Fig. 3 for R=a � 5 and 10.
In calculations, we have taken k � 0:94 (Eringen, 1977b; Gao, 1990). Outside the defect core region, the
nonlocal and local curves coincide. Contrary to the classical elasticity, nonlocal stresses are ®nite at the
defect line. From the mathematical standpoint, it follows from regularity of F�a, b; c� for all values of r
including r � R if t > 0 (see Appendix A) and regularity of the integrals between the limits t and in®nity
in expressions (18) (also Eqs. (29) and (38)) for t > 0 (all the singularities in these expressions appear in
the long wavelength limit t40).

Each component of the stress tensor reaches a maximum at some distance from the defect line. For
example, in a case of the twist disclination loops with the radii R � 5a and 10a, we have, respectively,

Fig. 3. Shear stress in the loop plane z � 0 for various radii of loops.

Table 1

Energies of twist, rotation and wedge loops

R=a E T

mO 2
z R

3
E R

mb 2
W R

E W

mO 2
y R

3

5.0 0.6350 0.3875 0.6337

10.0 0.9736 0.6852 0.9074

20.0 1.3179 1.0071 1.1726

50.0 1.8209 1.4500 1.5526
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tmax
Wz ' 0:788mOz and tmax

Wz ' 1:44mOz in the loop plane at the distances from the defect line ' 0:2R and '
0:11R inside the loop and tmin

Wz ' ÿ0:138mOz and tmin
Wz ' ÿ0:465mOz at the distances ' 0:28R and ' 0:13R

outside the loop. For the rotation dislocation loop, the corresponding results read: tmax
Wz ' 0:543mbW=R

and tmin
Wz ' ÿ0:348mbW=R at the distances from the defect line ' 0:23R for R=a � 5 and tmax

Wz ' 1:09mbW=R
and tmin

Wz ' ÿ0:78mbW=R at the distances ' 0:12R for R=a � 10: On the slip cylinder, r � R � 5a, and we
also obtain that tmax

rW ' 0:377mOz at a distance ' 0:22R from the loop plane and in a case of the loop
with r � R � 10a tmax

rW ' 0:879mOz at a distance ' 0:12R: Table 1 shows the energy dependence of three
types of loops on the loop radius (for the wedge disclination loop, we have taken n � 1=3).

Thus, the nonlocal theory eliminates the nonphysical singularities in the stress ®elds and elastic
energies of defects.
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Appendix A

In the case under consideration, integrals

F�a, b; c� �
�1
0

exp
ÿ
ÿ x2z

�
Ja�Rx�Jb�rx�xc dx

are expressed in terms of modi®ed Bessel functions In:

F�1, 1; 1� � 1

2z
exp

�
ÿ
ÿ
p2 � q2

��
I1�2pq�,

F�2, 2; 1� � 1

2z
exp

�
ÿ
ÿ
p2 � q2

��
I2�2pq�,

F�2, 1; 2� � 1

Rz
exp

�
ÿ
ÿ
p2 � q2

���ÿ
1� q2

�
I1�2pq� ÿ pqI0�2pq�

�
,

F�2, 2; 3� � 1

z2
exp

�
ÿ
ÿ
p2 � q2

���
pqI1�2pq� ÿ 1

2

ÿ
1� p2 � q2

�
I2�2pq�

�
,

F�2, 0; 3� � 1

2z2
exp

�
ÿ
ÿ
p2 � q2

���ÿ
p2 � q2

�
I0�2pq� ÿ

�
p

q
� 2pq

�
I1�2pq�

�
,

F�2, 1; 4� � 1

Rz2
exp

�
ÿ
ÿ
p2 � q2

���
pq
ÿ
p2 � 3q2

�
I0�2pq� ÿ

�
p2 � q2

ÿ
q2 � 3p2

��
I1�2pq�

	
,

where p � r=�2 ���
z
p �, q � R=�2 ���

z
p �:
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